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What have we learnt at this conference?

= that Howard Padmore and Joe Stohr have put together
an excellent conference program

Howard Joe

g
= that many presentations were of such a high level, g aII i
that a summary of them is bound to fail. I WI



Structure of the talk

® 3rd generation sources, FEL and ERL

—>
schemes
—>

" Ultrashort X-ray pulses
Time dependent processes
=  Optics
Microscopy, imaging
= Coherence

Lensless imaging, interferometry,
dynamical properties of matter

" |Improved detection schemes
We keep talking about it, but do too little !



Increased beam stability

SLS electron beam current
from 13. November 8:00 to 18. November 8:00

Top-up injection
at the SLS: =

250

nt [mA]

200

150

beam curre

100

50

Top up also at APS and
at future/upgraded sources

14.Nov '02
15.Nov '02
16.Nov '02
17.Nov '02
18.Nov '02

5 days

Top-up injection ===> position stability

Position stability (o) Energy stability ~10-°
100 s: 30 nm Correcting the average hor. orbit by
20 days: 0.5 um adjusting the RF-frequency

Year: 1-2 um



Peak Brilliance

FEL and ERL schemes

J. Hastings, T. Shintake, S. Gruner, many posters
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~ You just heard
the talk by J. Arthur
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Reduction of the gun emittance
could strongly reduce the dimension of a FEL
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A possible way to reduce the emittance

Field emission gun
L. Rivkin

FIELD REQUIREMENTS ~ 5 V/nm = 5 GV/m

for k~5,
V . .
FIELD ENHANCEMENT OF A TIP: Ep=y  tipapexradius =100 nm
r >V~ 2kV

Focusing layer Dielectric

R

Ultimate smallest tip built up by 4

Generic field emitter array tungsten atoms / H.-W. Fink, ETHZ



Superconducting Undulator

Better Gun

Hybrid Undulator Parameters
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Use fs pulses for, e.g., lensless imaging
of proteins

How long does it take for the molecule to fly apart?

S. Hau-Riege at Satellite Workshop on X-ray Science
with Coherent Radiation:

Only about 4 fs!

————— Need coherent control in the time domain

Seeded FEL
or ERL

More calculations of X-ray/matter interaction required



In the meantime:
femtosecond electron beam slicing

R.W.Schoenlein et al.
Science 287 (2000),
2237

First taste of short pulses for experiments
= Use high pulse energy, fs lasers technology
= Undulator radiators

= 102 — 104 photons per pulse (low efficiency)
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G. Ingold et al
Beam slicing at the SLS
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Intensities?

Current And Future X-Ray Sources
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With pump-probe techniques one can accumulate signal. That helps.



Structure of the talk

= 3rd generation sources, FEL and ERL
schemes

" Ultrashort X-ray pulses
Time dependent processes
=  Optics
Microscopy, imaging
= Coherence

Lensless imaging, interferometry,
dynamical properties of matter

" |Improved detection schemes
We keep talking about it, but do too little !



Making small beam spots
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P. Cloetens, C. Rau, C. Liu, A. Takeuchi, and others

Kirkpatrick-Baez optics:

= Achromatic
= Spot size is getting close to the diffraction limit A/(2- NA)
= Alignment can be difficult



Refractive lenses

Refractive lenses:

= Chromatic

= Once installed, robust

= Much used for higher X-ray energies

= Can now be made out of ‘plastic’

= Effective numerical aperture limited
by Compton scattering

extreme curvature:
R =1um - 3um
N =50-100

Schroer et al.,
APL 82, 1485 (2003)

V. Nazmov, |. Snigireva, S.D. Shastri,
and others



Fresnel zone plates

NN

- . ' C. David
""" 25Ky ®15.8K° 2. B@Aun 1D FZP for
W.yun N oLl hard X-rays
Center and outer
zones of a zone plate
with 50 nm outer zone Fresnel zone plates:
width and 700 um = Chromatic
thickness. = Soft X-ray microscopy

= Now also for hard X-rays
(zones in anti-phase)

G. Schneider, W. Chao, Y. Suzuki,
R. H. Menk Sr., B. Hornberger
and many others



A special zone plate

Kipp et al.

“Photon sieve”

transmissive reflective

These zone plates effectively remove subsidiary
maxima in the focal plane =) enhanced contrast



Wedges and capillaries
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C. Bergemann et al D. Bilderback et al

Capillaries:

= Squeezes X-ray beams

=Become waveguides for small diameters

=\Very small spot sizes are possible

=Coupling into the waveguide critical for efficiency



What is the smallest possible spot size ?

600
'E 400
=,
= 200
0
a 40 0 C. Bergemann et al
Minimum spot size r [mm]
(FWHM): ax..=0.64 W,
with
1 T

== ...this limit on spot size appears to
20. 2 \ryn

hold also for other X-ray focusing devices.
SiO,: AXin
Au:  AX i,



Chemical information

Spectromicroscopic probes
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A. Hitchcock



Aberration corrected photoemission microscope

PEEM Il
at ALS:
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Fig.1 Concept of a2 ¥-ray photoemission electron microscope using electron mirror carrector at the ALS

J. Feng et al

FProjectorDetector

At BESSY: SMART project Features:
= Much higher transmission

= Spatial resolution of 5 nm, better than for
XRM because of higher NA of electron
objective lens



Time Resolved PEEM  S:B.Choeetal %

BERKELEY LaB

Experimental Setup
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Observation of magnetic vortex dynamics
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Imaging of ultrafast spin dynamics with
Magnetic soft X-ray Transmission Microscopy

microcoil P. Fischer et al

150 300

—_—

TSN

At=+600ps  At=+800ps

sample: 4x4mm? PY element

Mstatic
D) ®
micromagnetic simulations (OOMMEF)
Photon > = stroboscopic pump-and-probe technique
- = high lateral resolution (<20nm) provided by FZP
M(t)k = high temporal resolution given by SR pulse width (<100ps)

inherent chemical sensitivity provided by XMCD magnetic contrast

Future: combine SXTM with streak camera
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Fully coherent radiation.......

J.M. Byrd
{ THz
Microwaves Visible X-ray y-ray =4.1 meV
MF. HF, VHF. UHF, SHF. EHF =33 cm-!
= 300 um

1024 Hz

100 108 106 109 1012 101 1078 1021
kilo mega giga tera peta exa zefta yotta

TR

Incoherent emission for long bunches,

il

P~N
Achieved at BESSY-II:
Coherent emission 104 more flux than from
for short bunches conventional IR sources

P~N2
Plans for CIRCE @ ALS

10— 10'° more flux




Coherent THz radiation
E.J. Singley, measurements performed at BESSY-II

THz Science:

= collective excitations

= superconductor gaps,

= protein motions & dynamics
= medical imaging

Near-field microspectroscopy
on living objects

Spatial resolution
of 70 um obtained
with 100 um aperture

Superconductors
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Near field microscopy

not possible with X-rays, because matter

behaves as dielectric for X-rays!




Using the partial coherence of an X-ray beam

Many contributions at the conference and at the workshop

Incoherent scattering

L

Coherent scattering

detector

non-crystalline object

particle distance d

speckle
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wavelength 4




Direct inversion of diffraction patterns
or
'solving the phase problem’
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Lensless imaging

See webpages of satellite workshop

Cluster of 50 nm gold balls

SEM image Reconstructed
image

J.H. Spence

General features:

3D reconstructions possible

Depth of field in um range,

I.e. cell dimensions;

much better than in TEM

10 nm resolution has been achieved
Ultimate resolution depends on
resistance to high radiation does

But note:

Sofar only demonstration expts;

but at Spring-8: on bacteria

(J. Miao, T. Ichikawa et al)

Electron microscopy still way ahead



Other uses of coherence

X-ray photon correlation spectroscopy

Studies of dynamics of (soft) condensed matter

A. Madsen. G. Griubel et al

Note: extremely photon-hungry; accessible momentum range limited by count rate

Phase contrast imaging, interferometry

Many projects at the long beamlines of SPring-8, T. Ichikawa et al
X-ray Fabry-Pérot for, e.g., metrology: Y. Shyd’ko

Sub-ps coherent manipulation

B.W. Adams
Ultrafast X-ray switch?

Coherent resonant magnetic scattering in soft X-ray range
J. Luning, J.B. Goedkoop
Challenge: combine with ps dynamics of magnetic processes

Phase problem can be solved by “oversampling” of speckle image
S. Eisebitt, J. Luning

Transmission @i “Best”
X-ray e Reconstruction
Microscope from

Speckle Intensities




Structure of the talk

3rd generation sources, FEL and ERL
schemes

Ultrashort X-ray pulses
Time dependent processes
Optics

Microscopy, imaging
Coherence

Lensless imaging, interferometry,
dynamical properties of matter

Improved detection schemes
We keep talking about it, but do too little !
Not true for G. Derbyshire



Pixel Detectors

G. Hulsen, C. Bronnimann et al

Si pn-junction X-rays %
Al

3.6 eV to create
1 eh-pair

Specs of SLS pixel detector
=Size: 40 x 40 cm2 (0.16m?)
= 2000 x 2000 pixels

= Pixel size: 200 x 200 pm?

= Modular detector -> dead area ~6%
0.2 mm = High frame rate: >10Hz

X = High duty cycle: <6% (Tro~6ms)
Pixel Sensor “rays
0.3m .2 mm

I ) Sensor ﬁ

Pixel Read-out s
Chip Bump Bonds Next Steps:

= Energy and time stamping
= Cross correlation of pixels in spatial
and temporal domains

Major initiatives at several SR facilities are now underway



SLS pixel detector

PX at Spring-8, BL38B1 E. F. Eikenberry et al

Lysozyme
1° rotation
10 s exposure




Inventive detection and measurement

methods

X-rays
= Superconducting junction X-ray detectors
r S. Friedrich. Suited for fluorescence detection

= A special method for detecting moving biomolecules
Y.C. Sasaki

= [Inelastic soft X-ray scattering
H.S. Fung: resolving power of 3x104 at 400 eV!
Other novel X-ray/VUV spectrometers: J. Guo, N. Kosugi, A. Tagliaferri, and
C. Masciovecchio and others
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Inventive detection and measurement

methods

X-rays
= Superconducting junction X-ray detectors
S. Friedrich. Suited for fluorescence detection

= A special method for detecting moving biomolecules
f Y.C. Sasaki

= [Inelastic soft X-ray scattering
H.S. Fung: resolving power of 3x104 at 400 eV!
Other novel X-ray/VUV spectrometers: J. Guo, N. Kosugi, A. Tagliaferri, and
C. Masciovecchio and others

White X-ray (SR)

NN\ Gold nanocrystal

K. myosin

Diffracted X-ray C-terminal i Sl

Ay

N-terminal

\




Inventive detection and measurement
methods

Electrons

= High kinetic energy photoemission
Important for bulk sensitivity in studies

onic materials properties . .
prop S ,-0.58nm /S i(100)
@ 0.85keV |
Exp.) . | !
= New 1D and 2D electron detectors .
P. Denes 2
£
o) cal.
ﬁ s—band x1
o @5.95keV
g (Exp) total
z
J [\\¥
AN
20'1|5'1|0'5|'(|)

Binding Energy €V)

Probe depth @ 6 keV > 10nm
Contribution of surface SiO, is negligible



Inventive detection and measurement
methods

Electrons

= High kinetic energy photoemission
Important for bulk sensitivity in studies
of electronic materials properties
Y. Takata, G. Paolicelli
Count rates very low!

= New 1D and 2D electron detectors
[P. Denes ]

e~ or hv

>2 GHz overall linear count-rate—

spectral readout in 60 pus—

time-resolved measurements

programmable, robust

Sized to fit existing spectrometers (Scienta, PHI, ...)




Spectacular growth of structural biology
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Automation of PX facilities

C. Nave, M. D. Miller, N. K. Sauter

SRS Daresbury

Need for standardization !



Filling the gap
between the third and fourth generation

= We have no problem filling that gap!

= Each three years (SRI cycle) we win at least an order of
magnitude in flux, brilliance, coherence, time resolution

= New SR facilities are very sophisticated
Upgrades of existing facilities are underway

= The future of the next generation looks brilliant

The instrumentation scientists make it all happen!

SRI, San Francisco, August 25-29, 2003
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